
 24

Abstract—In this paper, an approach for

modelling and analysing e-Marketplaces
based on agents is proposed. The approach
is founded on a Statecharts-based
specification language and on a Java-based,
discrete event simulation framework. The
former allows for the modelling of the
behaviour of the main agents (stationary and
mobile) of an e-Marketplace along with their
interaction protocols. The latter supports the
execution through simulation of agent-based
e-Marketplace models. The approach is
exemplified by defining and simulating a
consumer-driven e-Marketplace model which
offers mobile agent-based services for
searching and buying goods. The simulation
phase enabled validation of the e-marketplace
model and evaluation of the performances of
different kinds of mobile consumer agents.

Index Terms— Mobile Agents, Statecharts,

Agent-based e-Marketplace, Event-driven
Simulation, Performance Evaluation, Java

1. INTRODUCTION

LECTRONIC Marketplaces (e-
Marketplaces) are e-commerce

environments which offer new channels and
business models for buyers and sellers to
effectively and efficiently trade goods and
services over the Internet [12]. To support
intelligent and automated e-commerce
services, new enabling infrastructures are
needed.

 Manuscript received September 5, 2004.
 Giancarlo Fortino is Assistant Professor of Computer
Science Dipartimento di Elettronica, Informatica e
Sistemistica (DEIS) , Italy. (e-mail: g.fortino@unical.it)

These infrastructures can be effectively
developed using the emerging Agent
technology and paradigm [10] along with
XML-based emerging standards such as
ebXML [1]. Software Agents retain the
potential to structure, design and build e-
commerce systems which require complex
interactions between autonomous
distributed components [13]. In particular,
Agent-mediated e-commerce is concerned
with providing agent-based solutions which
support different stages of the trading
processes in e-commerce such as needs
identification, product brokering, merchant
brokering, contract negotiation and
agreement, payment and delivery, and
service and evaluation [9]. Moreover, the
distinctive capability of peculiar agents,
called “mobile agents” [11], to move across
a networked e-commerce environment can
extend that support by enabling advanced e-
commerce solutions such as location-aware
shopping, mobile and networked
comparison shopping, mobile auction
bidding, and mobile contract negotiation. In
addition, with respect to the traditional
paradigms (C/S, REV, COD), the
exploitation of mobile agents allows for
conservation of bandwidth, reduction of
latency, protocol encapsulation,
asynchronous and autonomous distributed
execution, dynamic adaptation, seamless
integration of heterogeneous system,
robustness and fault tolerance [11].
Although none of these strengths are unique
to mobile agents, no competing technique
shares all of them.

Modelling and Analysis of Agent-Based
Electronic Marketplaces
Giancarlo Fortino, Alfredo Garro, and Wilma Russo

E

 25

To date, a multitude of agent - and mobile
agent-based e-commerce applications and
systems have been developed [9], which
basically allow for the creation of even
complex e-Marketplaces on the Internet.
However, to more effectively evaluate such
solutions and, more generally, the benefits
of using Agents to develop e-Marketplaces
proper methodologies and tools are
required. Such methodologies and tools
should allow to validate, evaluate and
compare the effectiveness and the efficiency
of agent -mediated e-Marketplace models,
mechanisms, policies and protocols before
their actual implementation and deployment,
saving development efforts and identifying
better solutions.

In [7], an agent-based framework for e-
commerce simulation games has been
developed by using Zeus, a Java-based
multi-agent system developed at the British
Telecom Lab. Its goal is to evaluate through
multi-player shopping games, in which
agents represent sellers, buyers, brokers
and services of various kinds, the potential
consequences of novel combinations of
market models, business strategies and new
e-services. In [14], an infrastructure for
Internet e-Marketplaces, based on Aglets
mobile agents which supports real
commercial activities carried out by
consumers, agents and merchants, has
been proposed. Its goals is not only to
provide an advanced e-commerce service,
but also to evaluate several dispatching
models for mobile agents.

Although useful insights into new models
and strategies can be gained by playing
properly constructed games or by evaluating
real applications, discrete event simulators
are highly required to evaluate how these
systems work on scales much larger than
the scales achievable in games or in real
applications where humans are involved.
Nevertheless, few research efforts have
been devoted to analysing agent-mediated
e-Marketplaces by means of discrete event
simulation.

This paper proposes an approach to the
modelling and analysis of agent-based e-
Marketplaces which centres on a
Statecharts-based methodology for the
simulation of mobile agent-based

applications and systems [3]. The approach
is exemplified by defining and simulating a
consumer-driven e-marketplace model,
inspired by the system presented in [14],
which offers mobile agent-based services for
searching and buying goods.

The remainder of the paper is organized
as follows. In section 2, a Statecharts-based
approach for modelling and simulating
agent-based systems is presented. Section
3 shows the application of the approach for
modelling a consumer-driven, mobile agent-
based e-marketplace. In section 4 a
simulation scenario of the defined e-
Marketplace model is described and
evaluated. Finally, conclusions are drawn.

 2. AN APPROACH FOR MODELLING AND
 SIMULATING AGENT-BASED SYSTEMS

The proposed approach considers as the
starting point a high-level model of the
agent-based system that was previously
obtained using agent-oriented
methodologies [5] covering the phases of
requirements capture, analysis and high-
level design (see Fig. 1). This model can be
expressed by a set of Agent Types (AT)
which embody activity and offer services,
and by a set of Logical Communication
Links (LCL) among agent types which
embody interaction protocols.

The approach [3] consists of three
phases: Detailed Design, Coding and
Simulation.

Requirements
Capture

Analysis

Requirements
Statement

Design

>Agent Types (activity, services)
 AT={At1,At2,...,AtN)
>Logical Communication Links (protocols)
 LCL={LCl1,LCl2,...,LClM}

Figure 1. Requirements Capture, Analysis and

 High-Level Design.

 26

A. Detailed Design
The detailed design of the high-level

model of the agent-based system is
achieved through the visual specification of
the behaviour of the agent types which
embodies the definition of activity, services
and interaction protocols. Visual
specification is carried out using the Distilled
StateCharts (DSC) formalism [4], derived
from Statecharts [8], that allows for the
modelling of the behaviour of lightweight
agents, i.e. event-driven, single-threaded,
capable of transparent migration, and
executing chains of atomic actions.

The specification of the behaviour
(Abeh(Ati)) of a lightweight agent type is
carried out according to the FIPA-compliant
agent behavioural template [6], reported in
Fig. 2, which is a statechart consisting of a
set of basic states (Initiated, Transit,
Waiting, Suspended, and Active) and
transitions labelled by events. In particular,
an agent performs its computation and
interaction activity in the ADSC (ACTIVE
DSC) composite state, inside the Active
state, which is to be refined by the agent
designer. The presence of the deep history
connector (H*) inside the Active state allows
for the transparent migration of the
lightweight agent as detailed in [4]. The
Abeh(Ati) therefore consists of two parts: (i)
a statechart (Sbeh(Ati)) which incorporates
activity and interactions, and (ii) the related
set of events (Ebeh(Ati)) to be handled
which trigger state transitions in Sbeh(Ati).

Figure 2. The Detailed Design phase.

B. Coding
The coding of the detailed design model

of the agent-based system is carried out
using the Mobile Active Object Framework
(MAO Framework) [4]. In particular, by using
the Java-based MAO Framework, whose
class diagram is reported in Fig. 3, an agent
behaviour specification (Abeh(Ati)) can be
seamlessly translat ed into a composite
object (called MAOBehavior object) which is
the object-based representation of Sbeh(Ati)
and into a set of related event objects (or
simply Events) representing Ebeh(Ati).

Abeh(Ati)
MAO

Framework

State
Classes

Event
Classes

Agent Type
Package

currentState

parentState

compositeStates

context

DSC AState

MAOBehavior

SimpleState CompositeState

TopState
InitiatedState

WaitingState

SuspendedState

TransitState

FIPATemplate

ActiveState

Figure 3. The Coding phase.

C. Simulation

The simulation of the agent-based system
(see Fig. 4) is accomplished by means of a
Java-based discrete event simulation
framework for agent-based systems. Using
this framework, an agent-based complex
system can be easily validated and
evaluated by defining a simulator program
along with suitable test cases and
performance measurements.

In particular, the simulation engine of the
framework provides support for the: (i)
execution of agents by interleaving their
events processing, (ii) interchange of events
among agents, (iii) migration of agents, and
(iv) the clustering of agents into Agent
Servers connected by a Logical Network.

The basic simulation entities offered by
the framework are:

 27

− the AgentServer, which is an object
representing the agent server hosting
mobile and stationary agents;

− the Agent, which is an object
representing a stationary or a mobile
agent (A j) and including a pair of
objects: <Idj, Abehj(Ati)>, where Idj is
the agent identifier and Abehj(Ati) is the
MAOBehavior object related to the
agent type Ati;

− the VirtualNetwork, which represents
the logical network of hosts on which
an AgentServer is mapped;

− the UserAgent, which is an object
representing a user. A UserAgent,
which is directly connected to an
AgentServer, can create, launch and
interact with Agents;

− the UserAgentGenerator, which is an
object modelling the process of
generation of a UserAgent.

Aj=<Idj, Abeh j(Ati)>

Agent
Server Net

Simulation
Engine

SIMULATOR

1. Agents
 Mapping

events

3. Simulation
 Data

2. Start

agents

Figure 4. The Simulation phase.

In order to provide an high-level

exemplification of how to construct a
simulator without going into programming
details, consider the following application
scenario to analyze. A user is connected
through a low-bandwidth link to a remote
server which belongs to a fully-connected
network of agent servers with higher-
bandwidth links. The user sends a mobile
agent to the connected remote server where
the mobile agent is equipped with an
itinerary (i.e. a set of agent server to be
visited) provided by a stationary agent. The
task of the mobile agent is to travel along

the itinerary, perform some local
computation and, finally, come back and
report to its owner (i.e. the user created it).
The purpose of the simulation is to analyze
the average completion time of the mobile
agent.

The simulator program can be constructed
in the following steps:

(1) creation of the VirtualNetwork object
which is constructed as a set of server
nodes completely connected through high-
bandwidth links;

(2) creation of the AgentServer objects
and mapping of these objects onto distinct
server nodes of the VirtualNetwork object;

(3) creation of the UserAgent object,
which contains the code for the creation of
the specific mobile agent (a purposely
defined Agent object) and the code for the
computation of the mobile agent completion
time by marking the instants in time of the
departure and arrival of the mobile agent,
and binding of the UserAgent object to an
AgentServer object through a low-bandwidth
connection;

(4) creation of the stationary Agent
object providing the itinerary and mapping of
this object onto the AgentServer object to
which the UserAgent object is bound;

(5) creation and insertion of the Invoke
event directed to the UserAgent object into
the event queue inside the simulation
engine;

(6) initialization of the discrete-event
clock and start of the simulation engine.

3. MODELLING AN AGENT-BASED
ELECTRONIC MARKETPLACE

A consumer-driven e-Marketplace is an e-
Marketplace in which the exchange of goods
is driven by the consumers that wish to buy
a product. The modelled agent-based e-
Marketplace, inspired by the system
presented in [14], consists of a set of both
stationary and mobile agents which provides
basic services for the buying and selling of
goods.

Identification of the agent types along with
their activity and of the logical
communication links among the agent types
along with their interaction patterns, was
carried out by using Gaia [15].

Gaia is a methodology which has been

 28

specifically tailored to the analysis and
design of agent-based systems. It is
founded on the view of a multi-agent system
as a computational organisation composed
of a number of autonomous interactive
agents which play one or more specific
roles. Gaia drives the designer of an agent-
based application to obtain the
aforementioned identification through the
construction of the following set of models:

(i) the Prototypical Roles Model, the
Interactions Model and the Roles Model
(analysis models), which identify the roles
occurring in the system and model
interactions between the roles identified;

(ii) the Agent Model, the Services Model
and the Acquaintance Model (design
models), which, on the basis of the analysis
models, define the types of agents in the
system along with the services, the
activities, and the logical communication
paths of such agents.

Figure 5 reports the logical structure (or
acquaintance model) of the agent-based e-
Marketplace, highlighting the identified agent
types and the logical communication links
among them. In the following sections, the
functionality of each agent type, the
workflow of the system along with the
interactions among the agent types, the
different kinds of mobile consumer agents,
and the DSC specification of a model of
mobile consumer agent are illustrated.

UAA

APA MCA

BA VA

YPA

UAA – User Assistant Agent
APA – Access Provider Agent
MCA – Mobile Consumer Agent
VA – Vendor Agent
YPA – YellowPage Agent
BA – Bank Agent

Figure 5. Logical structure of the

agent-based e-Marketplace.

D. Types of Agents

User Assistant Agent (UAA). An UAA is
associated with a user and assists her/him
in: (i) looking for a specific product that
meets her/his needs; (ii) buying the product
according to a specific buying policy.

Access Provider Agent (APA). An APA

represents the entry point of the e-
Marketplace. It receives requests for buying
a product from a registered UAA and fulfils
them by generating a specific Mobile
Consumer Agent (MCA).

Mobile Consumer Agent (MCA). A MCA is
an autonomous mobile agent that deals with
the searching, contracting, evaluation, and
the payment of goods. In order to buy a
product, a MCA is equipped with a wallet
containing a limited amount of e-cash (or
“bills”).

Vendor Agent (VA). A VA represents the
vendor of specific goods.

YellowPage Agent (YPA). A YPA
represents an entry point of the federated
yellow pages service (or “Yellow Pages”)
which provides the location of agents selling
a given product. The following organizations
of Yellow Pages were established:
− Centralized: each YPA stores a complete

list of VA agents;
− One Neighbour Federated: each YPA

stores a list of VA agents and keeps a
reference to only one other YPA;

− M-Neighbours Federated: each YPA
stores a list of VA agents and keeps a list
of at most M YPA agents.
Bank Agent (BA). A Bank Agent

represents a reference bank of MCA and VA
agents. Bills owned by such agents are
unique, cryptographically signed documents
issued by one of the accredited banks. A bill
can be represented by a few bytes of
information containing: the name of the
bank, the amount of the bill, the unique bill
identifier, and the bank’s signature needed
to check the authenticity of the bill.

E. System Workflow

The system workflow is structured in the
following phases:
1. Request Input. When users wish to buy

a product, they interact with their
associated UAA which is delegated the
buying task by specifying a set of buying
parameters: product description,
maximum price (PMAX), Searching Policy
(SP) and Buying Policy (BP). Users is
notified by their UAA about the task
results as soon as the task is
completed. To perform its task an UAA
contacts the APA with which it is

 29

registered and submits a request
containing the product parameters
specified by the user. If the UAA is
trustworthy (i.e. from a commercial and
security viewpoint [14]), the APA
accepts the request and creates a
specific MCA by passing along the
product parameters and the location of
the initial YPA to be contacted.

2. Searching. The MCA obtains a list of
locations of VA agents which sell the
requested product by using the Yellow
Pages. Searching can be carried out by
adopting one of the following searching
policies:
− ALL: all YPA agents are contacted;
− PARTIAL (PA): a subset of YPA

agents are contacted;
− ONE-SHOT (OS): only one YPA is

contacted.
3. Contracting & Evaluation. The MCA

interacts with the VA agents in the
obtained list to request an offer for the
desired product (Poffer), evaluates the
received offers, and selects an offer, if
any, for which the price is acceptable
(i.e., Poffer=PMAX) according to the
following buying policies:
− Minimum Price (MP): the MCA first

interacts with all the VA agents to
look for the lowest price of the
product; then, it buys the product from
the VA which offers it at the lowest
acceptable price;

− First Shot (FS): the MCA interacts
with the VA agents until it obtains an
offer for the product at an acceptable
price; then, it buys the product;

− Fixed Trials (FT): the MCA interacts
with a given number of VA agents
and buys the product from the VA
which offers it at the lowest
acceptable price;

− Random Trials (RT): the MCA
interacts with a random number of VA
agents and buys the product from the
VA which offers it at the lowest
acceptable price.

4. Payment. The MCA moves to the
location of the selected VA and pays the
desired product using a given amount of
bills. The following basic protocol is
used to execute the money transaction

between the MCA and the VA: (i) the
MCA gives the bills to the VA; (ii) the VA
sends the bills to its BA; (iii) the BA
validates the authenticity of the bills,
exempted them from re-use, and, finally,
issues an amount of bills equal to that
previously received to the VA; (iv) the
VA notifies the MCA.

5. Reporting. The MCA reports the buying
result to the UAA. On the basis of an
unsuccessful buying result (vendor not
found, offers not acceptable) the user
can submit a new request either raising
PMAX or using a different combination of
searching and buying policies.

F. Models of Mobile Consumer Agents

A behaviour model for the MCA can be
defined on the basis of a tuple: <SP, BP,
TM>, where SP is a searching policy in
{ALL, PA, OS}, BP is a buying policy in {MP,
FS, FT, RT}, and TM is a task execution
model. Two different task execution models
were defined:

− Itinerary: the Searching and
Contracting & Evaluation phases are
performed by a single MCA which fulfils
its task by sequentially moving from
one location to another within the e-
Marketplace;

− Parallel: the Searching and Contracting
& Evaluation phases are performed by
a set of auto-coordinating mobile
agents in a parallel way. The MCA is
able to generate a set of children
(generically called workers) and to
dispatch them to different locations; the
workers can, in turn, spawn other
workers.

An MCA task execution model is chosen by
the APA when it accepts a user input
request; the choice can depend on the pair
<SP, BP> selected by the user and on the e-
Marketplace characteristics. If the chosen
task execution model is of the Parallel type
then the MCA is named PCA (Parallel
Consumer Agent) otherwise if the chosen
task execution model is of the Itinerary type
then the MCA is named ICA (Itinerary
Consumer Agent). Therefore, a PCA model
is defined by a tuple <SP, BP, parallel>
whereas an ICA model is defined by a tuple
<SP, BP, itinerary>.

 30

G. Programming the Mobile Consumer
Agents

The DSC specification of the defined PCA
model (or simply PCA) is reported in Fig. 6.
The defined ICA model can be seen as a
particular case of the PCA. With reference to
Fig. 6, it is worth pointing out that:

− events are asynchronously received
and processed according to a run-to-
completion semantics (i.e. an event can
be processed only if the processing of
the previous event is fully completed);

− the received events can be
asynchronously generated by the agent
itself (internal events) or by other
agents (external events) through the
primitive
generate(<mevent>(<param>)), where
mevent is an event instance and param
is the list of formal parameters of
mevent including the identifiers of the
event sender and of the event target,
and (possibly) a list of event
parameters.

The PCA accomplishes the searching
phase in the SEARCHING state.

In particular, as soon as the PCA is
created, it moves (ac1) to the first YPA
location and locally interacts (ac2) with the
YPATarget by sending it the VAListQuery
event.

The YPATarget replies to the PCA with
the List event which can contain a list of VA
agents with linked YPA agents.

After processing the reply (ac3), the PCA

can do one of the following:
− create an Itinerary Searcher Mobile

Agent (ISMA), which sequentially
moves from one YPA location to
another, if the Yellow Pages are of the
One-Neighbour Federated type, and
passes (ac4) into the contracting phase
as soon as a PList event sent by the
ISMA is received. The PList event
contains the partial list of vendors
collected by the spawned agent. It is
worth noting that the adoption of the
ISMA to carry out the searching task
can improve efficiency since an ISMA is
lighter than a PCA;

S E A R C H I N G

A N A L I Z E

W A I T 4 L I S T S E A R C H

 / ac1

SQuery / a c2

Lis t / ac3

P A Y F O R

P A I D

P A Y I N G

 / ac7

P a y m e n t D o n e / a c 8

CO N T R & E V A L

E V A L U A T E

W A I T 4 C M A

/ ac5

E v a l / a c 1 1

Con t rac t

Pay

S R e p o r t / a c 9

R E P O R T I N G

N o t i f y U A / a c 1 0

PP
ric

e
/ a

c6

S E A R C H & B U Y

URepor t / a c9

C r e a t e d M S

PLis t / ac4

W A I T 4 M S

ac1 : generate(new Move(self(), YPATarget.getCurrLocation()));
generate(new SQuery(self()));

ac2 : generate(new VAListQuery(self(), YPATarget, vaListQuery));
ac3 : List reply = (List)mevent; proc = processInitialYPAReply(reply);
 if (proc.createISMA()) sa1();
 else if (proc.createSSMA()) sa2();
 else if (proc.noVendors()) sa3();
 else sa4();
sa1 : generate(new Create(self(), “ISMA”, nextYPATarget));
 generate(new CreatedMS(self()));
sa2 : for (int i=0; i<ypaList.size(), i++)
 generate(new Create(self(), “SSMA”, ypaList.elementAt(i)));
 generate(new CreatedMS(self()));
sa3 : generate(new UReport(self()));
sa4 : generate(new Contract(self()));
ac4 : PList reply = (PList)mevent; res = processMSReply(reply);
 if (res.contract()) sa4()
 else if (res.noVendors()) sa3();
ac5: for (int i=0; i<vaList.size(), i++)
 generate(new Create(self(), “CMA”, vaList.elementAt(i)));
ac6 : PPrice offer = (PPrice)mevent; eval = evaluateOffer(offer);
 if (eval.buy()) generate(new Eval(self()));
 else if (eval.noBuy()) sa3();
ac7 : bills = prepareBills(price);
 generate(new PayFor(self(), VATarget, bills));
ac8 : nbills = nbills – eval.price();
 generate(new SReport(self()));
ac9 : generate(new Move(self(), self().getHomeLocation()));
 generate(new NotifyUA(self()));
ac10: reportTR();
ac11: generate(new Move(self(), VATarget.getCurrLocation()));
 generate(new Pay(self()));

ac = action chain
sa = sub-action

Figure 6. ADSC of the behaviour of the PCA.

 31

− create M Spawning Searcher Mobile
Agents (SSMAs), if the Yellow Pages
are organised according to the M-
Neighbours Federated type, and pass
(ac4) into the contracting phase when
all the PList events sent by the directly
created SSMA agents are processed.
In particular, an SSMA moves to the
assigned YPA and, in turn, creates a
child SSMA for each reachable YPA.
This parallel searching technique
generates a spawning tree with SSMA
agents as nodes and rooted at the
PCA. If an SSMA interacts with a YPA
which has already been visited by an
SSMA belonging to the same spawning
tree, the YPA notifies the SSMA which
comes back to its parent;

− directly pass into the contracting phase
if the organization of the Yellow Pages
is Centralized;

− report an unsuccessful search to the
UAA.

The contracting phase accomplished in
the CONTRANDEVAL state involves the
creation of a Contractor Mobile Agent (CMA)
for each VA in the vaList. Each CMA moves
to the assigned VA location, contracts with
the VA, and finally returns to the PCA
location to report. The evaluateOffer
method, which embeds the buying policy,
evaluates the VA offers (PPrice events)
reported by the CMA agents and generates
(ac6) a decision about when and from which
VA to purchase. In the PAYFOR state the
PCA pays (ac7) the VA using the PayFor
event which contains the bills.

After receiving the PaymentDone event, the
PCA passes (ac8) into the REPORTING state
from where it moves back (ac9) to the
original APA location and finally reports
(ac10) to its UAA.

4. SIMULATION OF THE AGENT-BASED
ELECTRONIC MARKETPLACE

The primary goal of the simulation phase
which was performed was to validate the
defined agent-based e-Marketplace model
and particularly:

 (i) the behaviour of each type of agent,
(ii) the different models of MCA agents in

each type of the Yellow Pages
organizations, and

(iii) the agent interactions over the logical
communication links.

The second goal of the performed

simulation phase was to better understand
the effectiveness of the simulation for
evaluating the performances of different
agent-mediated e-Marketplaces solutions.
To this purpose, the completion time of the
buying task was individuated as the main
performance index. In particular, with
reference to the proposed model, the
completion time of ICA and PCA was
evaluated.

The simulation and analysis parameters
are presented in Table 1.

Table 1.
Simulation and Analysis parameters

NVA Number of VA agents
NYPA Number of YPA agents

YPO Yellow Pages Organization type: {Centralized, 1 -Neighbour, 2 -
Neighbour}

δMA
Link delay between two adjacent nodes for transmitting an
agent

δMSG
Link delay between two adjacent nodes for transmitting a
message

TC=TREPORT-TCREATION
Completion time of the MCA, where T CREATION
is the time of the MCA creation and TREPORT is
the time of the MCA report

 32

The simulated e-Marketplace was set up as
follows:
− each stationary agent (UAA, APA, YPA,

VA, BA) executes in a different agent
server;

− the agent servers are mapped onto
different network nodes which are
completely connected through links which
have the same characteristics. The
communication delay (d) on a network
link is modelled as a lognormally
distributed random variable with a mean,
µ, and, standard deviation, s [2];

− each UAA is connected to only one APA;
− the price of a product, which is uniformly

distributed between a minimum (PPMIN)
and a maximum (PPMAX) price, is set in
each VA at initialization time and is never
changed; thus the VA agents adopt a
fixed-pricing policy to sell products;

− each YPA manages a list of locations of
VA agents selling available products.

− a UAA searches for a desired product,
which always exists in the e-Marketplace,
and is willing to pay a price PMAX for the
desired product which can be any value
uniformly distributed between PPMAX and
(PPMAX+PPMIN)/2.
In order to analyze e-Marketplaces having

different structures and dimensions, the
simulations were run by varying (i) the
organization of the Yellow Pages
(Centralized, 1-Neighbour and 2-Neighbour
organized as a binary tree), (ii) the number
of YPA agents in the range [10..1000] and
(iii) the number of VA agents in the range
[10..10000]. These ranges were chosen for
accommodating small as well as large e-
Marketplaces. The durations of the
performed simulations were specifically set
to allow for the completion of the buying task
carried out by the MCA.

The results obtained from the simulations
allowed to: (a) evaluate which task
execution model is more appropriate with
respect to SP and BP policies and for the
characteristics of the e-Marketplace, and (b)
validate the analytical model proposed in
[14] regarding the sequential and parallel
dispatching of mobile agents.

Regarding to point (a), the ICA performs
better than the PCA in the following cases:
− SP={ALL, PA, OS}, BP=FS,

YPO={Centralized, 1-Neighbour};
− SP={PA, OS}, BP=FS, YPO=2-

Neighbour.
Thus, the APA can choose the itinerary task
execution model if such cases occur.

Regarding to point (b), the performance
evaluation focused on the <ALL, MP, *>
models (see section 3.B) since they are the
only models of MCA which guarantee both a
successful purchase and the best purchase
since they are successful at identifying the
VA selling the desired product at the
minimum price.

The results obtained for the <ALL, MP, * >
MCA models over an YPA organization of
the binary tree 2-Neighbour type are
reported in Fig.7. The results shown in Fig. 7
were obtained with NYPA={10, 100} and by
varying NVA. In agreement with the analytical
model reported in [14], the PCA, due to its
parallel dispatching mechanism,
outperforms the ICA when NVA and NYPA
increase.

1

10

100

1000

10000

100000

10 100 1000 10000

N VA

Tc
 [t

.u
.]

ICA with N YPA=100

PCA with N YPA=100

ICA with N YPA=10

PCA with N YPA=10

Fig. 7. Performance evaluation of the <ALL, MP, * >
models for an e-Marketplace with YPO=2-Neighbour
binary tree type, NYPA={10, 100} and variable NVA.

5. CONCLUSIONS

Flexible methodologies and tools for the
modelling and simulation of agent-based
systems are necessary to effectively support
agent-oriented software development in
complex application domains such as e-
Commerce.

This paper has proposed a novel
approach centred on Statecharts-based

 33

tools to the modelling and analysis through
simulation of agent -based systems. The
approach has been exemplified by
presenting a case study concerning with the
modelling and the simulation of a consumer-
driven e-Marketplace.

The approach provides the following
valuable advantages:

(i) Statecharts-based modelling language.
The use of a modelling language based on
Statecharts, which are included in UML,
reduces the learning curve for modelling due
to the pervasive exploitation of UML in
Industry and Academia;

(ii) Validation through simulation. The use
of the simulation to validate agent-based
systems before their actual deployment and
execution, is strategic. In fact, the
simulation, particularly if event-driven, is the
only viable means to validate large-scale
and complex systems.

In addition, the use of the MAO
Framework allows for a seamless translation
of the agent behaviour model into code,
reducing the discontinuities between
modelling and implementation phases.

Current research efforts are geared at
modelling multiple integrated marketplaces
and addressing through simulation security,
efficiency and scalability issues of such
large-scale multi agent systems.

REFERENCE
[1] ebXML, http://www.ebxml.org.
[2] Floyd, S., Paxson, V., “Difficulties in simulating the

Internet,” IEEE/ACM Transactions on Networking
9(4), 2001, pp. 392-403.

[3] Fortino, G., Russo, W., “A Statecharts Based
Methodology for the Simulation of Mobile Agents,”
Proc. of the EUROSIS European Simulation and
Modeling Conference (ESMc'03), Naples, 27-29,
Oct., 2003, pp. 77-82.

[4] Fortino, G., Russo, W., Zimeo, E., “A Statecharts-
based Software Development Process for Mobile
Agents,” Information and Software Technology,
46(13), pp. 907-921, 2004.

[5] Fortino, G., Garro, A., Russo, W., “From Modeling
to Simulation of Multi Agent Systems: an
Integrated Approach and a Case Study,” Proc. of
the 2nd Conference on Multi-Agent system
TEchnologieS (MATES), Erfurt, Germany, Sept.
2004. to appear in Springer series of LNAI.

[6] Foundation of Intelligent and Physical Agents
(FIPA), http://www.fipa.org.

[7] Griss, M., Letsinger, R., “Games at Work – Agent-
Mediated E-Commerce Simulation,” Proc. of ACM
Autonomous Agents , Barcellona, Spain, Jun.
2000.

[8] Harel, D., Gery, E., “Executable Object Modelling
with Statecharts,” IEEE Computer 30(7), 1997, pp.
31-42.

[9] Kowalczyk, R., Ulieru, M., Unland, R., “Integrating
Mobile and Intelligent Agents in Advanced e-
Commerce: A Survey,” Agent Technologies,
Infrastructures, Tools, and Applications for E-
Services , NODe 2002 Agent-Related Workshops,
Erfurt, Germany, October 7-10, 2002. Kowalczyk,
R., Müller, J.P., Tianfield, H., Unland, R. (Eds.):
LNCS 2592 Springer, 2003.

[10] Luck, M., McBurney, P., Preist, C., “Agent
technology: enabling next generation computing: A
roadmap for agent-based computing,” AgentLink
report, 2003. Available from
www.agentlink.org/roadmap.

[11] Lange, D.B., Oshima, M., “Seven good reasons for
Mobile Agents,” Communications of the ACM,
42(3), 1999, pp. 88-89.

[12] Medjahed, B., Benatallah, B., Bouguettaya, A.,
Ngu, A.H.H., Elmagarmid, A.K., “Business-to-
business interactions: issues and enabling
technologies,” The VLDB Journal , 12, 2003, pp.
59–85.

[13] Maes, P., Guttman, R.H., Moukas, A., “Agents that
buy and sell: Transforming commerce as we know
it,” Communications of the ACM, 42(3), Mar. 1999,
pp. 81-91.

[14] Wang, Y., Tan, K-L., Ren, J., ”A Study of Building
Internet Marketplaces on the Basis of Mobile
Agents for Parallel Processing,” World Wide Web:
Internet and Web Information Systems , 5, 2002,
pp. 41-66.

[15] Wooldridge, M., Jennings, N. R., Kinny, D., ”The
Gaia methodology for agent-oriented analysis and
design,” Journal of Autonomous Agents and Multi-
Agent Systems, 3(3), 2000, pp. 285–312.

